Other
Scientific paper
Oct 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010jgre..11500f04k&link_type=abstract
Journal of Geophysical Research, Volume 115, Issue 1, CiteID E00F04
Other
2
Geochemistry: Sedimentary Geochemistry, Planetary Sciences: Solid Surface Planets: Physical Properties Of Materials, Planetary Sciences: Solid Surface Planets: Surface Materials And Properties, Planetary Sciences: Solid Surface Planets: Instruments And Techniques
Scientific paper
Congruous with earlier work, Martian soil along the Spirit Rover's traverse at Gusev crater can be divided into three broad groups by size: fines (<150 μm), sand, and a mix of various grain sizes. The key chemical observation is greater homogeneity in fines relative to the other two, consistent with regional- and global-scale sampling of chemical compositions by finer particle sizes. The mix class is generally more heterogeneous as are samples from the Columbia Hills within each class. Variation in the trace element Ni is consistent with a CI contribution not exceeding 3%, while that of Ti is compatible with Fe-Ti oxide enrichment not exceeding 3%. Physical mixing models are poorly supported. Among many potential binary and three-component mixing models, only two show some consistency with the soil data: typical fines with the opaline Si end-member identified at Home Plate and typical fines with sulfates (bearing a variable mix of Ca, Fe, and Mg cations). We also infer that binary mixing transcends classes, contrasting strongly with terrestrial sediments, and that mixing trends are consistent with significant nonmixing contributions, perhaps including localized chemical alteration. The decoupling between chemistry and grain size classes also suggests that processes linking composition with grain size, such as heavy mineral sorting, may have been minimal or absent entirely. The primary exception to this is the correlation between Cl and Si, Cl-S, and Al-Si, which is strongest in the fines class.
Herkenhoff Ken E.
Karunatillake Suniti
McLennan Scott
No associations
LandOfFree
Regional and grain size influences on the geochemistry of soil at Gusev crater, Mars does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Regional and grain size influences on the geochemistry of soil at Gusev crater, Mars, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Regional and grain size influences on the geochemistry of soil at Gusev crater, Mars will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1233882