Other
Scientific paper
Jul 1992
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1992metic..27..199a&link_type=abstract
Meteoritics, vol. 27, no. 3, volume 27, page 199
Other
3
Scientific paper
In recent years the Sahara Desert, particularly the Acfer region, has proven itself a rich source of meteoritic material, with over 400 samples from North Africa now residing in research laboratories. Among the samples retrieved has been a number of primitive chondrites, including CVs, CRs, COs, an odd CM/CO specimen, and several fragments similar to the "unique" chondrite ALH 85085 and a type 3.0-3.2 ordinary chondrite. Samples of each of these have been analyzed for carbon content and delta^13C and some for nitrogen and hydrogen content, delta^5N and deltaD. Each of these elements shows a lower concentration in the Saharan samples than those determined for non-Saharan, including Antarctic samples of the same group. Carbon. The carbon content of the Saharan carbonaceous chondrites analyzed were between 25 and 50% of the mean of the non-Saharan members of the group (the one exception is Allende, which is known to have a lower carbon content that any other members of the CV group). Stepped combustion showed that a low organic carbon content of these samples was the cause of the overall carbon depletion. Nitrogen. The nitrogen contents of the Acfer region CR chondrites was substantially lower than that of their non-Saharan equivalents. The nitrogen of the CR chondrites is isotopically distinct from terrestrial samples and from other carbonaceous chondrites in that it is highly enriched in ^15N. The isotopic composition of the Saharan samples shows no gross difference in the delta^15N, but there is some internal variation, due to differential weathering and the rusting of metal leading to the presence of trapped atmospheric nitrogen and consequently the delta^15N becoming variably lighter. Hydrogen. The hydrogen contents of the Saharan CR chondrites and the 3.0-3.2 ordinary chondrite Adrar 003 were found to be lower than the non-Saharan counterparts: The deltaD of the samples were isotopically normal quite unlike their non-Saharan counterparts, which are known to be the most enriched in deltaD known. The stepped combustion of the whole-rock Saharan chondrites shows that organic contamination is minimal, but evaporitic carbonate occurs in some samples with ca. 1200 ppm in the most affected. This is a localized feature as some possibly paired meteorites from the same fall sometimes show no evidence for the presence of terrestrial carbonates. Given the range of meteorites over which the observations are made it it necessary to question whether the difference in abundance and isotopic composition are primary effects. Perhaps the data are more easily explained by the destruction of macromolecular carbon as a result of extreme weathering conditions, a temperature cycle of over 150 degrees C and desiccation followed by rehydration. Such circumstances may lead to the volatilization of side chains, the degradation and removal of the organic material. The most important implication of the effects may be in terms of identifying the site of the heavy hydrogen in the CR (Kolodny et al., 1980) and unequilibrated ordinary chondrites (Robert et al., 1979; McNaughton et al., 1981, 1982) as it appears to be in a form that can be easily exchanged with terrestrial water or destroyed by mild but prolonged heating. It would seem to preclude a phyllosilicate carrier as exchange of waters of hydration occurs only above 200 degrees C, thus supporting the labile side chains of the macromolecular species or soluble organic material as the major carrier of the deuterium anomaly. References: Kolodny, Y., Kerridge, J.F., and Kaplan I.R. (1980) EPSL, 46, 149-158. McNaughton, N.J., Fallick, A.E., and Pillinger, C.T. (1982) J. Geophys. Res. 87, A297-302. McNaughton, N.J., Borthwick, J., Fallick A.E., and Pillinger, C.T. (1981) Nature 294, 639-641. Robert, F., Melivat, L., and Javoy, M. (1979) Nature 282, 785-789.
Ash Richard D.
Pillinger Colin T.
No associations
LandOfFree
The Effects of Saharan Weathering on Light Element Contents of Various Primitive Chondrites does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Effects of Saharan Weathering on Light Element Contents of Various Primitive Chondrites, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Effects of Saharan Weathering on Light Element Contents of Various Primitive Chondrites will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1208913