Other
Scientific paper
Jul 1997
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1997dps....29.2806k&link_type=abstract
American Astronomical Society, DPS meeting #29, #28.06; Bulletin of the American Astronomical Society, Vol. 29, p.1025
Other
Scientific paper
The ``core-mantle'' accretion model for the formation of giant gaseous planets requires about 10(6) -- 10(7) years for Jupiter and Saturn to attain their present masses. By this time accretion in the inner Solar System is thought to have been well under way, with perhaps a few dozen lunar to martian sized bodies distributed in the terrestrial planet region. However, an alternative model of giant planet formation, involving gravitational instability of the solar nebula, suggests that Jupiter and Saturn may have formed as quickly as ~ 10(2) years (Boss, Science 1997, in press). If this was the case then the evolution of small planetesimals in the inner Solar System would have proceeded while enveloped in the solar nebula and under the gravitational influence of Jupiter and Saturn. We have begun investigating just such a scenario in order to determine whether the presence of Jupiter and Saturn helps or hinders terrestrial planet formation. We use an initial population of test particles on orbits near 1 AU (Delta a = 0.0015 AU) with low eccentricity and inclination (e = sin I = 10(-5) ) and randomly distributed arguments of pericenter and longitudes of node. We find that the secular perturbations of Jupiter and Saturn force the eccentricities and inclinations to values as high as e =~ 0.02 and I =~ 2(deg) and impose a common argument of pericenter and longitude of node on all of the orbits. While gas drag does not effectively reduce the forced e and I due to Jupiter and Saturn it does act to reduce the proper e and I due to the initial distribution. After decaying 0.05 AU in semi-major axis the mutual inclination of the individual orbits with respect to each other drops from the initial range 0 < sin I < 2 x 10(-5) to 0 < sin I < 2 x 10(-6) and the dispersion in eccentricity drops by about a factor of two. The encounter velocities of bodies traveling along these nearly coplaner and concentric orbits remain low (a few meters per second) despite the considerable forced eccentricities. Our preliminary finding is that gas drag can prevent encounter velocities from growing to kilometer per second levels, even in the presence of significant perturbations from Jupiter and Saturn.
Kortenkamp Stephen J.
Wetherill George W.
No associations
LandOfFree
Gas Drag Effects on Planetesimals Evolving Under the Influence of Jupiter and Saturn does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Gas Drag Effects on Planetesimals Evolving Under the Influence of Jupiter and Saturn, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gas Drag Effects on Planetesimals Evolving Under the Influence of Jupiter and Saturn will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1189511