SAR imagery in non-Cartesian geometries

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

The subject of the reported work is the improvement of geometrical models for a SAR scanning in pushbroom, spotlight, scansar or bistatic imaging modes. This research has been motivated by the planetary cornerstone mission of ESA's long term program for European Space Science ('rendezvous' with a comet, and fly-bys of asteroids). In this specific context, the synthetic aperture radar is destined for an important role, but the rules and standard backgrounds of the Cartesian geometry are no longer justified. Several new techniques are proposed to handle with an optimal precision the data relative to celestial bodies with a complex geometry (coherent and non-coherent imagery). On the basis of a mathematical rigor (singleness of solutions, convergence of processes, biunivocity of transformations and generalizations), a lot of scenarios are discussed with key relations established (plane and spherical models, bodies with a symmetry of revolution and general bodies, specific sensor(s) trajectories as fly-bys or flight into orbit with the possibility of an approaching probe). The four methods developed are the tomographic analogy of radar principles (only known, previously, in the usual case of a straight line flight at constant altitude over a plane surface) and Hilbertian techniques for a direct adaptation to the scanned surface geometry, an automated autofocusing which enhances the contrast resulting from a Cartesian reconstruction and the coordinates transformation where the real space is converted into a fictitious space where Cartesian algorithms are fully rigorous. Beyond the fact that an interpolation step is often unavoidable, the major conclusion of the research is that all the prospected techniques are complementary and that the choice between the methods has to be made according to geometry, objectives and time requirements (reconstruction on board or not). In particular, coordinates transformation techniques are worthy of commendation in the case of plane (wavefront curvature balancing) or spherical models in a monostatic situation. Autofocusing methods (judicious ponderation between the usual reconstruction and a reconstruction of the derivative of the key expression of the mathematical formalism with regard to one of its parameters) has proven its validity in the hilly regions east of Belgium with low differences in contrast, while the Hilbertian principles are general methods without any restriction on the paths of the probes, the geometry of the celestial body, the modulation scheme and antennae radiation pattern. On the other hand, the tomographic analogy can be applied in all situations where a correct model of the body relief is available, but there are some approximations in the formalism (no antenna pattern modeling, no balancing of the range migration).

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

SAR imagery in non-Cartesian geometries does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with SAR imagery in non-Cartesian geometries, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and SAR imagery in non-Cartesian geometries will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1182444

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.