Fate of microbial nitrogen, carbon, hydrolysable amino acids, monosaccharides, and fatty acids in sediment

Computer Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

The fate of microbial carbon, nitrogen, hydrolysable amino acids (HAAs), monosaccharides, and fatty acids in sediment was investigated experimentally. The microbial community of a tidal flat sediment was labeled with 13C-enriched glucose and 15N-enriched ammonium, and sediment was incubated for up to 371 days. Analysis of total concentrations and 13C- and 15N content of bulk sediment, hydrolysable amino acids (including D-alanine), monosaccharides, total fatty acids (TFAs), and phospholipid-derived fatty acids (PLFAs) allowed us to trace the fate of microbial biomass and -detritus and the major biochemical groups therein (proteins, carbohydrates, and lipids) over intermediate time scales (weeks-months). Moreover, the unidentified fraction of the labeled material (i.e. not analyzed as HAA, FA, or carbohydrate) provided information on the formation and fate of molecularly uncharacterizable organic matter. Loss of 13C and 15N from the sediment was slow (half live of 433 days) which may have been due to the permanently anoxic conditions in the experiment. Loss rates for the different biochemical groups were also low with the following order of loss rate constants: PLFA > TFA > HAA > monosaccharides. The unidentified 13C-pool was rapidly formed (within days) and then decreased relatively slowly, resulting in a gradual relative accumulation of this pool over time. Degradation and microbial reworking of the labeled material resulted in subtle, yet consistent, diagenetic changes within the different biochemical groups. In the HAA pool, glycine, lysine, and proline were lost relatively slowly (i.e. best preserved) while there was no accumulation of D-alanine relative to L-alanine, indicating no relative accumulation of bacterial macromolecules rich in D-alanine. In the fatty acid pool, there was very little difference between PLFAs and TFAs, indicating a very similar lability of these pools. Differences between individual fatty acids included a relatively slow loss of i15:0, ai15:0 and 18:1ω7c which likely resulted from production of these bacterial fatty acids during bacterial reworking of the organic matter. Differences between loss rate constants for individual monosaccharides were not significant. An exception was ribose that was produced and lost relatively rapidly, which may be related to ribose being an important component of RNA. Losses of bulk 13C and 15N were closely coupled despite partly being present in different biochemicals and partly being derived from different microbial sources, indicating no selective preservation of either C or N during organic matter diagenesis.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Fate of microbial nitrogen, carbon, hydrolysable amino acids, monosaccharides, and fatty acids in sediment does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Fate of microbial nitrogen, carbon, hydrolysable amino acids, monosaccharides, and fatty acids in sediment, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fate of microbial nitrogen, carbon, hydrolysable amino acids, monosaccharides, and fatty acids in sediment will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1116517

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.