Other
Scientific paper
Nov 2000
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2000phdt.........2e&link_type=abstract
Thesis (PhD). UNIVERSITE DE MONTREAL (CANADA), Source DAI-B 61/05, p. 2575, Nov 2000, 132 pages.
Other
Scientific paper
Chapter 1. We present time-series of ultra-high S/N, high resolution spectra of the He II λ 4686 Å emission line in the O4I(n)f supergiant ζ Puppis, the brightest early-type O-star in the sky. These reveal stochastic, variable substructures in the line, which tend to move away from the line-center with time. Similar scaled-up features are well established in the strong winds of Wolf-Rayet stars (the presumed descendants of O stars), where they are explained by outward moving inhomogeneities (e.g., blobs, clumps, shocks) in the winds. If all hot-star winds are clumped like that of ζ Pup, as is plausible, then mass-low rates based on recombination-line intensities will have to be revised downwards. Using a standard `β' velocity law we deduce a value of β = 1.0-1.2 to account for the kinematics of these structures in the wind of ζ Pup. In addition to the small-scale stochastic variations we also find a slow systematic variation of the mean central absorption reversal. Chapter 2. We introduce a new polarimeter unit which, mounted at the Cassegrain focus of any telescope and fiber-connected to a fixed CCD spectrograph, is able to measure all Stokes parameters I, Q, U and V across spectral lines of bright stellar targets and other point sources in a quasi-simultaneous manner. Applying standard reduction techniques for linearly and circularly polarized light we are able to obtain photon-noise limited line polarization. We briefly outline the technical design of the polarimeter unit and the linear algebraic Mueller calculus for obtaining polarization parameters of any point source. In addition, practical limitations of the optical elements are outlined. We present first results obtained with our spectropolarimeter for four bright, hot-star targets: We confirm previous results for Hα in the bright Be star γ Cas and find linear depolarization features across the emission line complex C III/C IV (λ 5696/λ 5808 Å) of the WR+O binary γ2 Vel. We also find circular line polarization in the strongly magnetic Ap star 53 Cam across its Hα absorption line. No obvious line polarization features are seen across Hα in the variable O star θ1 Ori C above the σ ~ 0.2% instrumental level. Chapter 3. We present low resolution (~6 Å), high signal-to noise spectropolarimetric observations obtained with the new William-Wehlau spectropolarimeter for the apparently brightest Wolf-Rayet star in the sky, the 78.5d WR+O binary γ2 Velorum. Quasi- simultaneous monitoring of all four Stokes parameters I(λ), q(λ), u(λ) and v(λ) was carried out over an interval of 31 nights centered on periastron. All emission lines in our observed wavelength interval (5200-6000 Å) show highly stochastic variations over the whole run. The phase-dependent behavior of the excess emission in the C III λ 5696 line can be related to the wind-wind collision phenomenon. Varying features of Stokes q and u are seen across the strong lines, probably as a result of variable electron scattering of mainly continuum light. The spherical symmetry of the WR wind is thus broken by the presence of the O companion and clumping in the WR wind. Similar features in the extended red wing of the C III λ 5696 emission line remain unexplained. No obvious circular line polarization features are seen across any emission line above the 3σ ~ 0.03% instrumental level.
No associations
LandOfFree
The global structure of hot star winds: Constraints from spectropolarimetry does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The global structure of hot star winds: Constraints from spectropolarimetry, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The global structure of hot star winds: Constraints from spectropolarimetry will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1115585