Other
Scientific paper
Aug 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006noao.prop..129d&link_type=abstract
NOAO Proposal ID #2006B-0129
Other
Scientific paper
We propose to obtain SNR > 60 optical spectra of the DA white dwarf stars for which the Sloan Digital Sky Survey spectra indicated temperatures inside de ZZ Ceti instability strip, but time series photometry show they are not variables. The Sloan spectra have insufficient SNR, specially below 4000A, where there are hydrogen lines whose strength can be used to measure surface gravity accurately. Theoretically and observationally, the location of the instability strip depends both on temperature and mass. To use the properties derived from the pulsating stars as applying to all white dwarf stars, and their progenitors, we must demonstrate pulsation is a normal evolutionary state. As the instability strip is only 1200K wide, accurate temperatures and log g must be obtained and therefore the spectra must include the log g sensitive lines Hgamma to H9. White dwarf stars, the objects of this proposal, are the end point of evolution of around 97% of all stars born. As they cool, they pass through instability strips, where they are seen as multi-periodic pulsators. Each pulsation is an independent measurement, placing another constraint on the stellar properties. Pulsations allow the determination of the stellar compositional layers, including the core, crucial to understand the progenitor's evolution, from AGB to planetary nebulae nuclei, "born again" phase, and their possible evolution to SNIa through accretion. As white dwarf progenitors lose at least half of their masses before turning into white dwarfs, they contribute to the interstellar medium enrichment, and measuring their structure in detail will allow us to decode nuclear reaction rates and convection, which determine their evolution. Pulsating white dwarf stars are also laboratories for physics at high densities as crystallization, neutrino cooling, and axion emission. White dwarf cooling, also measured through pulsations, allows an independent measurement of the age of the galactic components and was the first to indicate an age of 13 Gyr to the Universe, back in 1987. Now that we have observed white dwarf stars in all the components of our galaxy, possible differences in component ages are detectable. Our goal is to determine if the instalibity strip is pure, implying the information we obtain on the variables applies to white dwarf stars in general. As these stars are on average fainter than g=18.2, we require blue sensitive 8m class telescope.
No associations
LandOfFree
Is the SDSS ZZ Ceti instability strip really pure? does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Is the SDSS ZZ Ceti instability strip really pure?, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Is the SDSS ZZ Ceti instability strip really pure? will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1104417