Geometric and homological properties of affine Deligne-Lusztig varieties

Mathematics – Algebraic Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

34 pages

Scientific paper

This paper studies affine Deligne-Lusztig variety $X_{\tw}(b)$ in the affine flag variety of a tamely ramified group. We describe the geometric structure of $X_{\tw}(b)$ for $\tw$ minimal length element in a conjugacy class of extended affine Weyl group, generalizing one of the main results in \cite{HL}. We then provide a reduction method relating $X_{\tw}(b)$ for arbitrary $\tw$ in the extended affine Weyl group to those associated to a minimal length element. Based on this, we establish a connection between the dimension of affine Deligne-Lusztig variety and the degree of class polynomial of affine Hecke algebra and as a consequence, prove a conjecture of G\"ortz, Haines, Kottwitz and Reuman in \cite{GHKR}.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Geometric and homological properties of affine Deligne-Lusztig varieties does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Geometric and homological properties of affine Deligne-Lusztig varieties, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Geometric and homological properties of affine Deligne-Lusztig varieties will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-106464

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.