Oxygen diffusion in monazite

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

1

Oxygen, Diffusion, Monazite, Nuclear Reaction Analysis

Scientific paper

We report measurements of oxygen diffusion in natural monazites under both dry, 1-atm conditions and hydrothermal conditions. For dry experiments, 18O-enriched CePO4 powder and monazite crystals were sealed in Ag Pd capsules with a solid buffer (to buffer at NNO) and annealed in 1-atm furnaces. Hydrothermal runs were conducted in cold-seal pressure vessels, where monazite grains were encapsulated with 18O-enriched water. Following the diffusion anneals, oxygen concentration profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 18O(p,α)15N. Over the temperature range 850 1100 °C, the Arrhenius relation determined for dry diffusion experiments on monazite is given by: Ddry= 1.9×10-6exp(-356±26 kJ mol-1/ RT) m2 s-1. There is no evidence of diffusional anisotropy.
Under wet conditions at 100 MPa water pressure, over the temperature range 700 880 °C, oxygen diffusion can be described by the Arrhenius relationship
Dwet=3.1×10-17exp(-100±20 kJ mol-1/RT) m2 s-1
Under hydrothermal conditions at 800 °C, oxygen diffusion shows little dependence upon PH2O over the range 10 160 MPa.
Oxygen diffusion under hydrothermal conditions has a significantly lower activation energy for diffusion than under dry conditions, as has been found the case for many other minerals, both silicate and nonsilicate. Given these differences in activation energies, the differences between dry and wet diffusion rates increase with lower temperatures; for example, at 600 °C, dry diffusion will be more than 4 orders of magnitude slower than diffusion under hydrothermal conditions. These disparate diffusivities will result in pronounced differences in the degree of retentivity of oxygen isotope signatures. For instance, under dry conditions (presumably rare in the crust) and high lower-crustal temperatures (˜800 °C), monazite cores of 70-μm radii will preserve O isotope ratios for about 500,000 years; by comparison, they would be retained at this temperature under wet conditions for about 15,000 years.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Oxygen diffusion in monazite does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Oxygen diffusion in monazite, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Oxygen diffusion in monazite will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1064074

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.