Astronomy and Astrophysics – Astronomy
Scientific paper
May 1995
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1995apj...444..831h&link_type=abstract
Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 444, no. 2, p. 831-847
Astronomy and Astrophysics
Astronomy
116
Brightness, Detonation, Light Curve, Molecular Dynamics, Stellar Models, Supernovae, Abundance, Equations Of State, Hydrodynamics, Infrared Astronomy, Monte Carlo Method, Radiative Transfer, Stellar Luminosity
Scientific paper
We compute optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SN Ia's) using an elaborate treatment of the Local Thermodynamic Equilbrium (LTE) radiation transport, equation of state and ionization balance, expansion opacity including the cooling by CO, Co(+), and SiO, and a Monte Carlo gamma-ray deposition scheme. The models have an amount of Ni-56 in the range from approximately or equal to 0.1 solar mass up to 0.7 solar mass depending on the density at which the transition from a deflagration to a detonation occurs. Models with a large nickel production give light curves comparable to those of typical Type Ia supernovae. Subluminous supernovae can be explained by models with a low nickel production. Multiband light curves are presented in comparison with the normally bright event SN 1992bc and the subluminous events Sn 1991bg and SN 1992bo to establish the principle that the delayed detonation paradigm in Chandrasekhar mass models may give a common explosion mechanism accounting for both normal and subluminous SN Ia's. Secondary IR-maxima are formed in the models of normal SN Ia's as a photospheric effect if the photospheric radius continues to increase well after maximum light. Secondary maxima appear later and stronger in models with moderate expansion velocities and with radioactive material closer to the surface. Model light curves for subluminous SN Ia's tend to show only one 'late' IR-maximum. In some delayed detonation models shell-like envelopes form, which consist of unburned carbon and oxygen. The formation of molecules in these envelopes is addressed. If the model retains a C/O-envelope and is subluminous, strong vibration bands of CO may appear, typically several weeks past maximum light. CO should be very weak or absent in normal Sn Ia's.
Höflich Peter
Khokhlov Alexei M.
Wheeler Justin C.
No associations
LandOfFree
Delayed detonation models for normal and subluminous type IA sueprnovae: Absolute brightness, light curves, and molecule formation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Delayed detonation models for normal and subluminous type IA sueprnovae: Absolute brightness, light curves, and molecule formation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Delayed detonation models for normal and subluminous type IA sueprnovae: Absolute brightness, light curves, and molecule formation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1058627