Astronomy and Astrophysics – Astrophysics – Earth and Planetary Astrophysics
Scientific paper
2010-06-15
Astronomy and Astrophysics
Astrophysics
Earth and Planetary Astrophysics
6 pages, 2 figures, 1 table. Accepted for publication in A&A
Scientific paper
[ABRIDGED] Since the discovery of the first transiting extrasolar planet, transit timing has been recognized as a powerful method to discover and characterize additional planets in these systems. However, the gravitational influence of additional planets is not the only expected source of transit timing variations. In this work, we derive the expected detection frequency of stellar companions of hot-jupiter transiting planets host-stars, detectable by means of transit timing analysis. Since roughly half of the stars in the solar neighborhood belong to binary or multiple stellar systems, the same fraction of binary systems may be expected to be present among transiting planet-host stars, unless planet formation is significantly influenced by the presence of a stellar companion. Transit searches are less affected by the selection biases against long-period binaries that plague radial velocity surveys. If the frequency of binaries among hot-jupiter planets host stars is the same as determined in the solar neighborhood, after 5 years since the discovery of a sample of transiting planets 1.0%+/-0.2% of them have a probability >99% to present transit timing variations >50 sec induced by stellar binarity, and 2.8%+/-0.3% after 10 years, if the planetary and binary orbits are coplanar. Considering the case of random inclinations the probabilities are 0.6%+/-0.1% and 1.7%+/-0.2% after 5 and 10 years respectively. Our estimates can be considered conservative lower limits, since we have taken into account only binaries with periods P>5x10^3 days (a>=6 AU). Our simulations indicate that transit timing variations due to the light travel time effect allow discovery of stellar companions up to maximum separations equal to a\sim36 AU after 5 years since the discovery of the planet (a\sim75 AU after 10 years).
No associations
LandOfFree
Planetary transit timing variations induced by stellar binarity. The light travel time effect does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Planetary transit timing variations induced by stellar binarity. The light travel time effect, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Planetary transit timing variations induced by stellar binarity. The light travel time effect will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-105317