Structure of the Solar Wind and Compositional Variations

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

7

Scientific paper

The composition of the solar wind is largely determined by the composition of the source material, i.e. the present-day composition of the outer convective zone. It is then modified by the processes which operate in the transition region and in the inner corona. In situ measurements of the solar wind composition give a unique opportunity to obtain information on the isotopic and elemental composition of the Sun. However, elemental — and to some degree also isotopic — fractionation can occur in the flow of matter from the outer convective zone into the interplanetary space. The most important examples of elemental fractionation are the well-known FIP/FIT effect (First Ionization Potential/Time) and the sometimes dramatic variations of the helium abundance relative to hydrogen in the solar wind. A thorough investigation of fractionation processes which cause compositional variations in different solar wind regimes is necessary to make inferences about the solar source composition from solar wind observations. Our understanding of these processes is presently improving thanks to the detailed diagnostics offered by the optical instrumentation on SOHO. Correlated observations of particle instruments on Ulysses, WIND, and SOHO, together with optical observations will help to make inferences for the solar composition. Continuous in situ observations of several isotopic species with the particle instruments on WIND and SOHO are currently incorporated into an experimental database to infer isotopic fractionation processes which operate in different solar wind regimes between the solar surface and the interplanetary medium. Except for the relatively minor effects of secular gravitational sedimentation which works at the boundary between the outer convective zone and the radiative zone, refractory elements such as Mg can be used as faithful witnesses to monitor the magnitude of these processes. With theoretical considerations it is possible to make inferences about the importance of isotopic fractionation in the solar wind from a comparison of optical and in situ observations of elemental fractionation with the corresponding models. Theoretical models and preliminary results from particle observations indicate that the combined isotope effects do not exceed a few percent per mass unit. In the worst case, which concerns the astrophysically important 3He/4He ratio, we expect an overall effect of at most several percent in the sense of a systematic depletion of the heavier isotope. Continued observations with WIND, SOHO, and ACE, and, with the revival of the foil technique, with the upcoming Genesis mission will further consolidate our knowledge about the relation between solar wind dynamics and solar wind composition.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Structure of the Solar Wind and Compositional Variations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Structure of the Solar Wind and Compositional Variations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Structure of the Solar Wind and Compositional Variations will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1047472

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.