Astronomy and Astrophysics – Astronomy
Scientific paper
Feb 1987
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1987azh....64..135k&link_type=abstract
Astronomicheskii Zhurnal (ISSN 0004-6299), vol. 64, Jan.-Feb. 1987, p. 135-144. In Russian.
Astronomy and Astrophysics
Astronomy
3
Angular Momentum, Momentum Transfer, Solar Rotation, Stellar Rotation, Surface Layers, Turbulence Effects, Angular Velocity, Coriolis Effect, Rossby Regimes, Stellar Magnetic Fields, Viscous Flow
Scientific paper
A derivation is made of angular momentum flows arising in a spherical rotating layer by interaction between convection and rotation. The initial convection, not perturbed by the effect of Coriolis forces, was assumed to be weakly anisotropic with a radially pronounced direction of anisotropy. Effective viscosities that compensate for angular momentum flows were also calculated. A solution of this equation was derived for the case of slow rotation to third-order terms with respect to the inverse Rossby number. For generating the observed differential rotation of the sun, it is sufficient that the measure of convection anisotropy reaches 0.1. It is shown that differential rotation is generated most effectively at moderate rotation rates when the Rossby number is of order of unity. Within fast-rotating convection shells differential rotation is suppressed. It is suggested that this effect is associated with an inverse correlation between rotation rate and magnetic field, as observed for fast-rotating magnetic stars.
No associations
LandOfFree
The turbulent transfer of angular momentum and the differential rotation of the sun and stars does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The turbulent transfer of angular momentum and the differential rotation of the sun and stars, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The turbulent transfer of angular momentum and the differential rotation of the sun and stars will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1012028