Mathematics – Differential Geometry
Scientific paper
2006-08-15
Mathematics
Differential Geometry
34 pages. 3 figures. To appear in Inventiones
Scientific paper
10.1007/s00222-007-0036-3
We study singularities of Lagrangian mean curvature flow in $\C^n$ when the initial condition is a zero-Maslov class Lagrangian. We start by showing that, in this setting, singularities are unavoidable. More precisely, we construct Lagrangians with arbitrarily small Lagrangian angle and Lagrangians which are Hamiltonian isotopic to a plane that, nevertheless, develop finite time singularities under mean curvature flow. We then prove two theorems regarding the tangent flow at a singularity when the initial condition is a zero-Maslov class Lagrangian. The first one (Theorem A) states that that the rescaled flow at a singularity converges weakly to a finite union of area-minimizing Lagrangian cones. The second theorem (Theorem B) states that, under the additional assumptions that the initial condition is an almost-calibrated and rational Lagrangian, connected components of the rescaled flow converges to a single area-minimizing Lagrangian cone, as opposed to a possible non-area-minimizing union of area-minimizing Lagrangian cones. The latter condition is dense for Lagrangians with finitely generated $H_1(L,\Z)$.
No associations
LandOfFree
Singularities of Lagrangian mean curvature flow: zero-Maslov class case does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Singularities of Lagrangian mean curvature flow: zero-Maslov class case, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Singularities of Lagrangian mean curvature flow: zero-Maslov class case will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-100002