Magnetic and Electronic Properties of Rare-Earth - Metallic Glasses.

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

Results of magnetic measurements are presented on the new metallic glass systems (R(,80)G(,20))(,100-x)Fe(,x) and (R(,80)Ga(,20))(,90)B(,10), where R is a rare-earth (i.e., La, Pr, Nd, Sm, Gd, Tb and Er) and G is Ga or Au for 0 (LESSTHEQ) x (LESSTHEQ) 30. High-field magnetization (to 80 kOe) and A.C. and D.C. susceptibility measurements were made from 1.4 K to 300 K. High-field magnetization data are analyzed by an Arrott plot technique and some Gd-based glasses show results consistent with the presence of the recently predicted infinite susceptibility phase of Aharony and Pytte. The magnetic hardness properties of most of these glasses (not containing S-state ions) are discussed in terms of the 'microdomain' model of Callen et al. In many glasses the magnetization reversal seems consistent with a coherent rotation mechanism as is suggested from the thermal variation of the coercivity. The glasses (R(,80)Ga(,20))(,70)Fe(,30) where R is Er and Tb are more complex and show behavior consistent with the presence of domain walls. Magnetic saturation was not obtained (at 80 kOe) on any glass containing an anisotropic rare -earth while glasses based on S-state rare-earths were fairly easily saturated. Giant intrinsic magnetic hardness is observed in the glasses (R(,80)G(,20))(,100-x)Fe(,x) where R is Nd or Pr and G is Ga or Au for 15 (LESSTHEQ) x (LESSTHEQ) 30. An unusual thermal variation of the coercive field is observed showing peaks at intermediate temperatures ((DBLTURN) 90 K). A phase separation into different amorphous stoichiometries is shown to exist by Fe('57) Mossbauer effect and other measurements. These results are consistent with a recent theory by Paul predicting that magnetic hardness can result from the presence of site-to-site variations in magnetic properties. Electrical resistivity measurements were made on the above glasses as well as the series (Pr(,80)Ga(,20))(,80)T(,20), where T = Cr, Mn, Co, Ni, Cu and Ga. These show negative temperature coefficients of resistivity at higher temperatures in most cases as well as structure in the resistivity below magnetic ordering temperatures. These results are shown to be consistent with some recent theories (for instance the extended Ziman theory) predicting negative slopes of the resistivity as well as to some theories predicting a magnetic contribution to the resistivity from coherent exchange scattering.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Magnetic and Electronic Properties of Rare-Earth - Metallic Glasses. does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Magnetic and Electronic Properties of Rare-Earth - Metallic Glasses., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic and Electronic Properties of Rare-Earth - Metallic Glasses. will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1019968

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.