Massive Cosmologies

Physics – High Energy Physics – High Energy Physics - Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0


21 pages

Scientific paper

We explore the cosmological solutions of a recently proposed extension of General Relativity with a Lorentz-invariant mass term. We show that the same constraint that removes the Boulware-Deser ghost in this theory also prohibits the existence of homogeneous and isotropic cosmological solutions. Nevertheless, within domains of the size of inverse graviton mass we find approximately homogeneous and isotropic solutions that can well describe the past and present of the Universe. At energy densities above a certain crossover value, these solutions approximate the standard FRW evolution with great accuracy. As the Universe evolves and density drops below the crossover value the inhomogeneities become more and more pronounced. In the low density regime each domain of the size of the inverse graviton mass has essentially non-FRW cosmology. This scenario imposes an upper bound on the graviton mass, which we roughly estimate to be an order of magnitude below the present-day value of the Hubble parameter. The bound becomes especially restrictive if one utilizes an exact self-accelerated solution that this theory offers. Although the above are robust predictions of massive gravity with an explicit mass term, we point out that if the mass parameter emerges from some additional scalar field condensation, the constraint no longer forbids the homogeneous and isotropic cosmologies. In the latter case, there will exist an extra light scalar field at cosmological scales, which is screened by the Vainshtein mechanism at shorter distances.

No associations


Say what you really think

Search for scientists and scientific papers. Rate them and share your experience with other people.


Massive Cosmologies does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Massive Cosmologies, we encourage you to share that experience with our community. Your opinion is very important and Massive Cosmologies will most certainly appreciate the feedback.

Rate now


Profile ID: LFWR-SCP-O-501681

All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.